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Observed Properties of Neutron Stars

» Over 1800 known as pulsars
» A few dozen accreting or quiescent sources in binary systems

» Less than a dozen isolated neutron stars
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Pulsars: The Early History

1932 - Chadwick discovers neutron.
1934 - W. Baade and F. Zwicky
predict existence of neutron stars as
end products of supernovae.

1939 - Oppenheimer and Volkoff
predict mass limit of neutron stars.
1966 - Colgate and White simulate
supernovae forming neutron stars.
1966 - Wheeler predicts Crab nebula
powered by rotating neutron star.
1967 - C. Schisler discovers pulsing
radio sources, including the Crab, with
military radar.

1967 - Hewish, Bell, Pilkington, Scott
and Collins discover the pulsar PSR
1919+21, Aug 6. Only Hewish
awarded Nobel Prize (1974).

1968 - Crab pulsar discovered.

1968 - T. Gold identifies pulsars with
magnetized, rotating neutron stars.
1968 - The term “pulsar” first appears
in print, in the Daily Telegraph.

1969 - “Glitches” provide evidence for
superfluidity in neutron star.

1971 - Accretion powered X-ray pulsar
discovered by Uhuru (not Lt.).

1974 - Binary pulsar PSR 1913416
discovered by Hulse and Taylor with
orbital decay due to gravitational
radiation. Nobel prize 1993.

1982 - First millisecond pulsar, PSR
B1937+-21, discovered by Backer et al.
1992 - Discovery of planets orbiting
PSR B1257+412, Wolszczan and Frail.
1992 - Prediction of magnetars by
Duncan & Thompson.
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Amazing Facts About Neutron Stars

» Densest objects this side of an event horizon: 10'® g cm~3

Four teaspoons on the Earth would weigh as much as the Moon.

» Largest surface gravity: 10 cm s~2, about 10'!g

» Fastest spinning massive objects known
PSR J1748-2446ad, located in the globular cluster Terzan 5 28,000
light years away, spins at 716 Hz. (33 pulsars have been found in
this cluster.) The velocity at this star's equator is c/4.

» Largest known magnetic field strengths: B = 10! G, Sun =1 G.

» Highest temperature superconductor: T, = 10 billion K
The record superconductor on the Earth is mercury thallium barium
calcium copper oxide (Hg12T3BazpCazoCuss50125), at 138 K.

» Highest temperature since Big Bang: T = 700 billion K

Fastest velocity of a massive object in the Galaxy: > 1083 km/s

» Largest burst of energy in our Galaxy since SN 1604
A burst from magnetar SGR 1806-20 was brighter than the full
moon in gamma rays and released more energy in 0.1 s than Sun
emits in 100,000 years. It ionized ionosphere to daytime levels.

» The only place in the universe except for the Big Bang where
neutrinos become trapped.

J.M. Lattimer Neutron Stars

v



Pulsars: Why do they pulse?
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The P— P Diagram — The H-R Diagram for Pulsars

The magnetic field strength and age can be expressed in terms of the

period P and the spin-down rate P: B

log[Period Derivative]
Taken from "Handbook of Pulsar Astronomy” by Lorimer & Kramer
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The Lives of Pulsars
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Proto-Neutron Stars and Neutron Star Evolution

vy

%
v Renoek™~200 km ¥ . 9)
%occre%_lone) { (delept?(mzotlon)
- ﬂ ock 2
. v—sphere v—sphere
R~15 km
~ —> T,~50 MeV
core heotmg
shoc x accretion
‘} hook lift—off deleptonization
7 T N mantle collapse (I t ~15's
ot = () t ~0.5 s maximum heating
standoff s|
Te~6%x10° K Te~3%10° K
coolin R~12 km R~12 km
Q_ Scooling) T,~0.03 MeV s T~0.02 MoV  —7
A ﬂy v cooling 7y cooling
—> cooling PN
v core R~12 km modified Urca R~12 km
cooling > 1.70.12 Mev —> T,~0.06 Mev  —
(V) t ~50 s To~2x108 K To~108 K
v—transparency
cold core (V) t ~ 50 — 100 yr (VI) 102 < t < 3x10° yr
warm crust star becomes observable X—ray
isothermal thermal emission

J.M. Lattimer Neutron Stars




Model Simulations of Proto-Neutron Stars
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Model Simulations of Proto-Neutron Stars
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Model Signal From Proto-Neutron Stars
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Neutron Star Structure

Tolman-Oppenheimer-Volkov equations
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Schematic Nucleonic Energy Density

n: number density; x: proton fraction; T: temperature
ns ~ 0.16 £ 0.01 fm—3: nuclear saturation density

B ~ —16 + 1 MeV: saturation binding energy

K =~ 220 + 15 MeV: incompressibility parameter

S, ~ 30+ 6 MeV: bulk symmetry parameter

a~ 0.065 £ 0.010 MeV~!: bulk level density parameter
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certain Nuclear Force

The density dependence of Esym(n) = Epeutrons(n) — Esymmetric(n) is crucial but
poorly constrained. The skewness, °E /9n®, is also uncertain.

80 T T T T T -J.I | ¥
" [— DBHF & &
60| |70 var AV, +bv+3-BF i ,-"
-— NLz e
- |- DD-TW B
— —- ChPT !
% 40
2,
a4 201 =
‘m‘- i " Skewness
1]
200 | | InucllearI maTler _
0

it C Fuchs, H.H. Wolter, EPJA 30(2006) 5
pip,

J.M. Lattimer Neutron Stars



The Uncertain Ey,(n)
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